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Abstract

A new representation, called the total hazard construction, of dependent

random variables by means of independent exponential random variables is

introduced.

Conditions which imply association of nonnegative random

variables are found using this construction.

Furthermore, new conditions

which imply stochastic ordering between two nonnegative random vectors are

obtained.

These strengthen previous results of the authors. Further

applications in reliability theory and in simulation are indicated.
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1. Introduction.

Let T be an absolutely continuous random variable to be thought of as a
lifetime of a device. If F and f are, respectively, the distribution and
the density functions of T then F=z1-F, A=-1ogF and » = f/F are,
respectively, the survival, hazard and hazard rate functions of T. It is
easy to verify that if X is standard (that is, mean 1) exponential random

variable then

(1.1) T =X

satisfies

where '¥'' denotes equality in law.

Equations (1.1) and (1.2) suggest that study of A can shed light and
understanding on the stochastic behaviour of T. One purpose of this paper is
to introduce and study a multivariate analog of (1.1) and (1.2). This is done
in Sections 2 and 3 where it is shown how to transform a set of independent

-~

standard exponential random variables X;,...,X, into a random vector T

n
which is stochastically equal to a given random vector T. The
transformation uses multivariate hazard functions (to be defined in Sections 2

and 3) and will be called the total hazard construction.

In Section 4 we list conditions under which the transformation

-

(X]se0esXy) » T is increasing (in this paper 'increasing' stands for

'‘nondecreasing' and 'decreasing' for ‘'nonincreasing') in each of the X;'s.

a ~

Under these conditions, then, the random variables Tl,...,Tn {and hence
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Tl,...,Tn) are associated in the sense of Esary, Proschan and Walkup (1967).
Let S and T be two absolutely continuous random variables with hazard

functions Q{w) = - log P{S>w} and R(w) = - log P{T>w}. Then, using the same

standard exponential random variable X, one can apply (1.1) and (1.2) to

A -

obtain S and T, defined on the same probability space, such that

(1.3) $=0l(x) 8ts, Tor1x) St
If
(1.4) Q(w) » R(w), w > 0,

then, from (1.3), S st S<T st T. Thus we see that (1.4) implies stochastic
ordering of S and T. In Section 5 we obtain a muitivariate extension of
this result, again using the total hazard construction of Sections 2 and 3.
Further applications are given in Section 6.

A random variable S 1is said to be stochastically smaller than a random

variable T (denoted S st T) if P{S > u} < P{T > u} for every u. A
random vector S = (Sl,...,Sn) is said to be stochastically smaller than a

random vector T = (Tl""’Tn) [denoted §_§t 1] if

for every increasing Borel measurable real function g. A function g is
called increasing if (Xy,...,Xy) < (yl,...,yn) implies
g(X]seeesXy) < g(yl,...,yn) where (Xq,...,x,) < (yl,...,yn) mean s

X; € Y i=1,...,n . It is well known that S ét T if and only if



Eg(S) < Eg(T)

for every increasing Borel measurable real function g for which the

expectations exist. Also §_§t T if and only if
P{S € U} < p{T € U}
for every Borel set U which has an increasing indicator function.

2. The total hazard construction: bivariate case.

Consider two nonnegative random variables T, and T, with absolutely
continuous joint distribution function F, joint density function f and
joint survival function F defined by ?Ytl,tz) = P(T; > t;, Ty > ty}. The
conditional hazard rate of T; at time t, given that T3_; >t s defined

ds

(2.1) A;(t) = Vim '[\?1

P{t <T.<t +atjT,>t, T, >t}
At40 ! I 2

- IF -l 3 F .
= [F(t,t)] (‘Sﬁ”tl’tz) t1=t2=t), t>0, i=12

Given that T2 = ty, the conditional hazard rate of Tl at time t » t2 is

defined as

- 1 1 _
(2.2) Al(t|t2) lim o= P{t < Ty <t +atfTyot, T, = tz}
ats0




(Substituting t and t, in the right hand side of (2.2) may yield 0/0.
Here and in the remainder of the paper such a ratio is interpreted as 0.)

Similarly define
(2.3)

The total hazard accumulated by time t by the random variable T,

given that min(Tl,Tz) > t, 1is defined by

(2.4) A(t) = [T

’ 0 Ai(u)du, t>0,1i=12

Given that T2 = t, and that T1 > ty, the total hazard accumulated by the

random variable T, during the time interval [tz,t2+t) is defined by

(2.5) At ty) = ftz A (u]ty)du, t, > 0, t > 0.
Similariy

t)+t
(2.6) a(t|ty) = /t Ap(ult)du, t; > 0, t

Note that with this definition,

(2.7) Al(tltz) = ap{tyrtft,), t, > 0, t

(2.8) Myt ty) = a,(t #t|t), tp > 0, t >

The total hazard accumulated by T, by the time it failed is defined as
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a(T)) 3F Ty < T, and as A (T,) + A (T;-T,|T,) if T, > T,. Similarly

define the total hazard accumulated by To by the time it failed.

Define the inverse functions

Ay (x) = inf{t » O: Ai(t) > x}, 1 =12, x> 0,

1]

-1 . ,
A (x|t2) inf{t » O: Al(tltz) >x}, x>0, t, >0,

-1 .
A, (xltl) = inf{t > O: Az(t|t1) >x}, x>0, t; >0,

and consider the functions al:Rf > R and azzRi > R define as follows: On

[(x1,%p) € Ro: ATM(x) < A3t (x,)),s

(2.9) al<X1,X2) = Ail(xl),
(2.10)  a,0xpuxy) = A7HG) + A5 0pmny (AT ) AT K, D),

2. -1 -1
and on {(xl,xz) € R: % (xl) > Ay (x2)}

(2.11)  ay(x),x,) = 855 Fxgeag (a5 ) a5 (1)),
(2.12)  ay(xpax,) = A5 (x,) «

Xp) * Ay

Motivated by the fact (see Remark 2.2 below) that the total hazards

AR

-,

» accumulated by T, and Ts by the time they failed, are independent standard
»

l.'

f: exponential random variables we introduce the following total hazard

construction:

Let X, and X, be independent standard exponential random variables

and consider the following transformation:

-~

T ay (Xq,%))
(2.13) . = .
T2 ag(xl,xz)

v RPN A AR

.
»

PR
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Theorem 2.1, Let (fl,fz) be defined as in (2.13) where Xy and X, are

independent standard exponential random variables. Then
~ ~ §t
Proof. Let Ay Al(.‘tz), and so on, be the analogs of Ay Al(-'tz), and

so on, defined in (2.1) - (2.3) with ?i replacing T;, i = 1,2. We will

show that

(2.15) A (t)
(2.16) Ap(t) = ay(t), t >0,
(2.17) X (t]t,)

Al(t), t > 0,

Al(tltz), t>t, >0

(2.18)  a(tfty) = a,(t|ty), t >ty > 0,

and the result then follows from the fact that

Ap(e)s ap(e), Ap(e]ty), an(e]ty)s £, > 0, t, > 0 uniquely determine f

1
(see, for example, the explicit formulas in Cox (1972) or in Shaked and

Shanthikumar (1984a)) and that

;1(‘), A2(')9 i1("132)s ;\2

«(t;), ty » 0, t, > 0, determine the joint

density of ?1 and T2 in a similar manner.

To show (2.15) notice that

. 2 1

{Ty>t, T, >t} = {AI !

(X)) >ty hp (Xp) >t} = {Xp > Ap(t), X, > a,(t)} .

Hence, for t > Q,

Pl < Ty et +ot|T) >t, T,>t)
= P{t < Ail(xl) <t + At|X1 > A (), X, > an(t)]
:P{A

L(8) <X At +at) X > A (), X, > Au(t)]
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Thus

= P{X; < Ap(t +at) - A (L))

"

1 - exp{-(a,(t +at) - ay(t))}.

. 1 A A A
A (t) = Tim = Pt < T, <t +at|T, >t, T, >t}
1 Ate0 At 1 1 2

1imd%f- (L-exp{-(A; (t+at) - A;(t))})
Aty

= gE-Al(t) = Al(t)

and (2.15) follows. The proof of (2.16) is the same.

To prove (2.17) note that for t > t, » O,

Thus, for

2
{7, > t, Tz = t,}
(05 05) + A7 0 (5T 051 005)) > £, 151 (0,) = )
= {t, + All(Xl-I\l(tZ)‘tz) >ty 150 (Ky) = t)
= {X] > aq(ty) + A (t-to|t,), Aél(Xz) = t,) .

t>t, » 0,

2

Plt < T) <t +at]T)>t, T, =t}
-1 -1 -1

-1
= Pt <n,  (Xo) + A (Xpma (" OG)) A, (X)) <t + at

X0 > Aqleg) * agleetyl )]s gy () = ty)

P{t-t, < AII(XI-Al(t2)|t2) <t tat -t
. -1 .
| X1 2 A(t)) + ag(t-tylty), Ay (X)) = ty)

[Xp > ap(tn) + ap(t-tyfts,), Agl(xz) =ty

P{X; ¢ Ap(t=t*at]t,) - A (t-ty|t,)} .

1

..........

.....
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i Hence, for t > t, > 0,
. 1
M (tfty) = Tim (1-exp{-(a) (t-tytat]t,) - Aq(t-t,|t,))})
at+0
d

, = gt A (t-tolty) (t]t,)
- at M 2 (2. 7) M 2

and (2.17) follows. The proof of (2.18) is the same. 1
2 Remark 2.2. From (2.13) one easily obtains: On {T1 < TZ} , X1 = Al(Tl) R
: Xy = Ap(Ty) + Ap(To-T;|T{), and on T 12 Tt s

Xp = A (T5) + Al(Tl-T2|T2) s X5 = Ap(T5) o Thus X; and X are the total

hazards accumulated by fl and T2 by the times they failed. Since (Ty,

Ty) st (fl, ?2), it follows that the total hazards accumulated by T; and
. To by the time they failed are independent standard exponential random
; variables (see also Remark 3.2).
5 Examp'~ 1 (Freund (1961) distribution). The Freund distribution provides a
o model in which the exponenti2l residual 1ife of one component depends on the
" working status of another component. It has the density
(2.19) fltyst,) = ag'exp{-(a¥8-8")t; - 3't,} if 0 <t) <t,,
5 =qa'8 exp{-a't1 - (a+6—a')t2} if 0<t,<ty,
- where a, a', 8, B' are nonneqative parameters. For this distribution

Al(t) = qt, t » 0,

=
nN
—
[ad
St
1}
w
(a4
-
ot
\%
<
"




N A1(t't2) =a't, t >0, t,> 0,
4 (tfty) =8't, 50, £, >0,
‘
‘
>
4 If (T},T,) has the joint distribution (2.19) then from (2.13) and (2.14)
o it follows that it has the same distribution as (fl,fz) where
g S | . -1 -1
(2.20) Ty =a X if a X{ <8 7%y,
-1 -1 -1 .o - -
2 =87y + (a')T (X8 aXy) it o7y 5 a7h,
N = _ =1 vy-1 -1 . -1 -1
3 T2 = a Xl + (g') (Xz-a BXI) if a Xl < B X2 .
> _ .-l . -1 -1
N =8 X if o 'X >8 X5 s
-
C4
‘; and Xy and Xp are independent standard exponential random variables.
‘i Representation (2.20) can be rewritten as
¢ s -l - -1 -1
? (2.21) Ty =a7X if aTiXp < 8T, ,
3 = (-1 -1 a . -1 -1
-(a)Xl’PB(l--a—r)Xz if aTX > 87X,
b _ -1 -1 8 . -1 -1
g TZ_(B) X2+G (1'?))(1 if a X1<8 X2’
_ -1 -1 -1
R
- Representation (2.21) is identical to (7) of Shaked (1984),
i The example will be continued later,
d
:
Example 2 (bivariate Pareto). Let (T1,Typ) have the joint survival function
o« _ -1
v = > ~
¥ Fltyty) = (Trtg#t,) 7yt > 0, t, > 0.
‘{ It is not hard to verify that in this case
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(2.22) A () = An(t) =-% log (1+2t), t » 0,
- t

(2.23)  ap(t|t,) = 2 Tog (1+ TI2T2)’ t>0,t,>0,
- t

(2.24)  a,(t]t)) = 2 T0g (1 "Tr.'&])’ t>0, t; >0,

Some algebra shows (using (2.13) and (2.14)) that (Ty,Tp) has the same

distribution as (fl,fz) where
=3 e L) X <X,
= exp{2X1 +-%X2} - %{e2X2+1) if X1 > X2 R
i, exp{-g—Xl + ) -3 (e2X1+1) X <X, ,
-5 (e 2.1y LA S A

here X; and X, are independent standard exponential random variables.

This example will be continued later.

3. The total hazard construction: multivariate case.

Consider a random vector T = <T1""’Tn)’ n > 2, with absolutely

continuous joint distribution function, In this section we describe the total

hazard construction of a random vector i = (?1,...,? ) such that I»§t i'.

n
The construction will be described in n steps numbered 1 through n. In Step

1 an index Jp is chosen at random from {1,2,...,n} and then ?j is
1
determined. Upon entering Step k, 2 < k < n, the random variables

T, ,...,f. have already been determined where
1 k-1
E {jl,...,jk_l} C (1,...,n} . In Step k an index j, is chosen at

J

10
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random from J = {1,...,n} - J and then T. is determined.

J
k
' We need to extend and slightly modify the notation of Section 2.
) . .
: For J = {Jseeendp} € {1,...,n} let t, denote (tjl,...,tjk). If
3 J = {il,...,in_k} then t3 denotes (til,...,tin_k). Let e = (1,...,1).

The length of e will vary from one formula to another, but it will be always
possible to determine it from the expression in which e appears.
For JC€ {l,...,n} and ieJ let xi(t|IJ = t;, Ty > te) denote the

- conditional hazard rate of Ti at time t given that Id = t, and that

% Iﬁ'> te where t > jZJ tj z max{tj:J e J} . If J =9 then
S V t. =0, Formally, for ieJ,
‘ Jjed J
- (3.1) A (t]Ty =2, T3> te)
- . 1
= lim = P{t <T. <t +at|T, =¢t,, T5 >te}, t> V t.
At40 at 1 —J =3 jed J
S
N (J may be empty). The absolute continuity of T ensures that this limit
" exists. To save space we sometimes supress the condition I3-> te and just

write Ai(t|I1J =t «) but the reader should keep in mind that ‘«' means

N T3> te with t being the same as the first argument of A, . The function
N Ai(. IJ = Ed’ «) will be of interest for us only on the (random) interval

- (max T., min T.J, however, to avoid a discussion of such random hazard rate
i. fugzgions Egjch a discussion can be found in Arjas (1981)] we do not emphasize

this point here. Note however that A.(t'IJ = is well defined for

i Ly *)

every t > V tj .
- Jed
For i ¢ J the total hazard accumulated by T; during the time interval

[V t.,, V t.,+t), t> 0, is defined by

A jed jed

[ V t.+t

N Jjed R
s (3.2) ATy = ty) = Vft A(ul Ty =ty +)du, £ 50, i€V
] .

) jed J

TN AT A AN A LT
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When J = 0, Ai(t|Id =t;) will be simply denoted by A;(t) .
We will introduce now a notation for the total hazard accumulated by

Ti yeoesl

by time t. Fix t > 0 and suppose that it is given that le

Jk-1
t. <t
ike1 )

(k > 1) failed at times tjl,..., , respectively (tj <o

<t
1 k-1
s are alive at time t. For i ${j,.eendy_q}s

T,!

and that all the other j

denote

Vsl s o (]t seeests ) = oA (t. )
3150 ee0d | I k-1 LB
k-1
+ A(E, -t T, =t. ;eee,T, =t, )
=2 N ‘]9.-1‘ N Jo-1 0 g1
Fas(t-t, T, =t. ..., T. =t ).
! Jk-1| o -1 k-1
Also denote (corresponding to the case k = 1)
wi(t) = Ai(t)’ t > 0.
Note that for tj1 < t52<"'<tjk-1 and 1§ {Jyseeesdpoq)s
Vil s i (t. T, yeeayt. Y = AL (t. )
s eeesdea Jk-ll J Jk-1 L |
k-1 '
+ 7 oA (t, -t T. =t, ,ue.,T, =t. ).
g=2 1 Jp Jpat 1 N Jo-1 0 a1
The total hazard accumulated by T, by the time it failed, qiven that
T. was the k-th T. to fail and that T, ,...,T: failed before T, is
1 J J1 Jk -1 1

T

Vil s . (T T, A
1|J1,...,Jk_1 1| Jpeeees d

Define the inverse functions

............

.................

..............
--------

............

-------
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A (x) = inf{t > O:Ai(t) > x}, 1 =1,2,..0on, x> 0,

and for nonempty JC (1,...,n}, t; >0 and i€ J,
-1 .
A (x|Id = t;) = inf{t > 0: 1\1.(t|I‘J =t;) > x, x> 0.

Motivated by the fact (see Remark 3.2 below) that the total hazards
accumulated by T1seeesTy by the time they failed, are independent standard
exponential random variables, we introduce and study the following total

hazard construction:

Let Xl,...,Xn be independent standard exponential random variables.

Step 1. Let j; be the (random) index (which, by absolute continuity, is

unique with probability 1) such that Afl (X, ) = min{A;I(X

i = 1, ...,
i %y ): i , n}

i
and define

3.3) T. =alx.).

Step k (k = 2,...,n). Given that Steps 1,2,...,k-1 resulted in

T. =t. ,...,T. =t, J = {Jyseeesip_1}. Let j, be the
i tJl’ Jio th-l let {3y sJk-1} et Jji
(random) index (which, by absolute continuity, is unique with probability 1)

such that

Com Pl s (b |t ety )T =t LT =t,
PERRATI RETERRTS FEPRAS PEPLIA I Jg-1 !




1 and Afl

I
the above expression, are nonnegative, Having chosen the (random) index x

It is easy to verify, by induction, that the arguments of A; , 1in

as described above, define

~ ~

-~
s
—
it
.
.
-
_-‘
n
ot
e
L ]

: (3.4.i) T. =T,

E I k-1
co= s s . (T,

;f: Jk Jkl‘]l’.'."]k°1 Jk~1| Jl

+ A?l[x
I
More explicitly,

(3.4.8i) T, =T e al g -y (F)

k-1 . . ) 5 . -
-222 Ajk(sz-le-1|Tj1= le,...,rj1_1= le-1)| le = le,...,Tjk_l = Tjk_l].
For example, if n =3 and Ail(xl) < Aél(xz), Ail(xl) < Agl(x3) and
0 DX tg (T DI Ty = a7 00T < Mg = mg(aTh )Ty = ATM K] then
(3.5) T, =a7tx),
(3.6) T, =T, + a0, - a (P T, = 1))
R v T TITy = Ty
(3.7)  Ty= T, 4430 kg = ag(fy) - ag(F, - T =TT, =TT, = 1)
- Ty eyl - ¢3|1,2(f2|f1’f2)|T1 ST T Ty

Theorem 3,1. Let j_ be as defined in (3.3) and (3.4) where X{seeasXy are

independent standard exponential random variables. Then

“~
s
]
.t
)
-
r’.'.
:
;$
¢

BRI DAl oy L

«® et Ve P P A S S 4 P S ] Tet Lt L S T s T .t TR .t . LY. P .t ST e LT e T e e S T e ™ ‘
. e e A N DA RN R P A AT e e T e et Tt T T e RN
B SO I SRS NI, B 5T S TS DALIPRIIR A AO R IRA EA N N U R CE TR L LU PPN |

DU R Y - -
I T LA T LT e N




15

“. ~

‘ To prove Theorem 3.1 define A analogously to the definition of A in
y, (3.1) with .i replacing T. Then all that is needed to complete the proof

)]

4 (see, e.g., Shaked and Shanthikumar (1984a)) is to show that for all

JC {1,...,n} , ied, t>» V t., we have
jed

: (3.9) ATy =2y, «) =y (t]T; =ty «) .

The proof of (3.9) is similar to the proofs of (2.15) - (2.18) but is

notationally more involved. We omit the details.

(AR AL REARA

2 Remark 3.2. It can be shown, using (3.3) and (3.4) that, for every

permutation (jj,...,J,) of (1,...,n), on (T. <T. <...<T. } we have
1 9 In

><
"
<

~

Xo = 9. s (T T, T, )y k=2,..0,n .,
SR I 5 PP FCTARE: DI PRSI N

2 thus X;,...,X, are the total hazards accumulated by ?1""’?n by the times

n
Y they failed. Since I_§t i_ it follows that the total hazards accumulated by

T1se005T, by the times they failed are independent standard exponential

e

random variables. This fact generalizes Theorem 2.2 of Schechner (1984), It

also follows from Section 4.5 of Aalen and Hoem (1978) and Proposition

FaCad

AN

) 2.2.11 of Jacobsen (1982),

[

-,

{ Remark 3.3. It should be emphasized that the total hazard construction (3.3)
L)l

” and (3.4) is theoretically and practically different than the following well

known standard construction (see, e.g., Law and Kelton (1982), p. 268 or

Rubinstein (1981), p. 59):

P .
.........
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5 Let Uy, Up,..., Uy be independent uniform [0,1] random variables and let

T-= (Tl""’T ) be an absolutely continuous random vector. Define

n

(3.10) Ti = inf{tlz P{T1 > tl} > Ul} .

(3.11) T =dinf{t s P(T > t T = T{,eeeu Ty = T gl > Ud, ko= 2,3,.00,0.

. Then

(3.12)  (Tf,...,T)) 8 (1,007

).

n

ir 277

- Although the construction defined by (3.3) and (3.4) is different than
the one defined by (3.10) and (3.11), the results which follow from (3.3) and
i (3.4) have analogs which follow from (3.10) and (3.11). These analogs will be

noted throughout the sequel.

4, An application: association of random variables.

4,1, The bivariate case.

Let T; and T, be nonnegative absolutely continuous random variables

(R AR N )

as in Section 2 and let fl and fz be defined as in (2.13). Since
(Tl’ T2) st (fl, ?2) we will not distinguish in this section between T and
i. and just write T .
If the functions a; and ap defined in (2.9) - (2.12) are increasing
in each argument when the other argument is held fixed then from (2.13) it

follows that T1 and T2 are associated in the sense of Esary, Proschan and

-
"8 8 8 8 & &

Walkup (1967). Association is a property which yields important probability

> inequalities and is particularly useful in reliability theory (see, e.q.,

.
'y

Barlow and Proschan (1975)). Thus it is of interest to find conditions which

s
o
«




“ow “w N

4R

g
-
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imply that a; and ap are increasing.

Theorem 4.1, If for all y > 0, u >0, b > 0, i =1,2,

(4.1) A (y+u) -Aﬂy)+A#Myﬂ0< A (utb|y)
then Tl and T2 are associated.

Remark 4,2, Intuitively, for i =1 say, Condition (4.1) says that the
larger T, is (compare T, =y to Tp =y + u) the smaller is the potential
hazard that can be accumulated by T; by the time y +u +b (see Figure
4.1). Thus, roughly speaking, the larger T, 1is the larger T; 1is and so
the association of T; and Ty is not surprising. For a similar result see

Arjas and Norros (1984).

Proof of Theorem 4,1. We just have to show that a;(xj,xp) and ap(xy,xp)

increase in x; and xp. The result then follows from Esary, Proschan and
Walkup (1967).

Consider aj(xj,xp). It is easy to see that, for a fixed xp, aj(xy,xp)
increases in xj. Thus one just has to show that, for a fixed xp, the
function ay(xy,xp) = Aél(xz) + Ail[xl-Al(Aél(xz))|Aél(xz)] increases in
x, € [0, AZ(AII(XI))] . Denote t = Aél(xz), t, = Ail(xl) . We need to show

then that, for each ty > 0,
(4.2)  F(t),t) =t a7 (ey) - ag(0)]E]

increases in t e [0, t1] .
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Figure 4.1, TIllustration of (4.1).




Rewrite (4.2) as Aplty) - ap(t) = ay[3(t,t) - t|t]. Similarly, if
u>» 0 and t + u < tl’ then

Ap(t)) = Ap(tu) = A [a(tg,t4u) -t - u|t +u]. Thus
(4.3) Ap(t+u) = Aq(t) + Ap[E(t t4u) -t - uft + u] = ag[E(t,t) - t]t].

But, by (4.1) [here LHS = left hand side, RHS = right hand side],
LHS (4.3) < A [3(ty,t+u) - t|t]. Thus,

A [a(tyst) = t]t] < afalty,t+u) - t|t]. But, for each t, A, (b|t) fis
increasing in b. Hence E(tl,t) < 3(t1,t+u), that is, E(tl,t) increases
int e [0,t,]

Similarly it can be shown that a,(xy,xp) increases in

H(x,))] -0

Condition (4.1) can be written by means of derivatives (if they are well

x; € [0, Ay(A;
defined):

Theorem 4,3, If for i = 1,2,

(4.4) A () + 3 a, (0] )]

azy < xi(y+b|y), b>0, y>0

(provided the derivatives in (4.4) are well defined) then T; and T, are
associated.

Proof. Rewrite (4.1) as: for i =1, 2, y > 0, b > 0,
(4.5)  [Ay(y*u) - A (y)] # [Ai(b|y+U) - Ay (fy)] < oy (bruly) - AL (bly), u s 0.

Dividing (4.5) by u > 0 and letting u + 0 one obtains (4.4) from (4.5). To
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obtain (4.5) from (4.4) integrate (4.4) with respect to the dummy variable

Yol

Example 1 (continued). From (2.21) it is easily seen that if

(4.6) a<a' and g < B’

then ?1 and ?2 are increasing functions of X; and X,. Hence if
(TI,TZ) has the Freund distribution with parameters satisfying (4.6) then
Ty and T, are associated. This result has been obtained also in Shaked

(1984).

Example 2 (continued). Differentiating (2.22) - (2.24) one obtains

1

A] (.Y) = + y s i= 192’
2 .
Mly) = e 12 L2
3 : -4p .
?a_ Ai (b'a)la=y -T1+2y)(1+2y+b), 1 = 1,2.

It is not hard now to verify (4.4). Hence if (T;,T,) has the bivariate Pareto
distribution then T; and T, are associated.

This result is not surprising. Shaked (1977) has shown that the
multivariate logistic distribution of Malik and Abraham (1973) has some
positive dependence properties. Since the multivariate Pareto distribution is

a simple transformation of the multivariate logistic distribution it follows

that also the multivariate Pareto distribution has some positive dependence

properties, It is not hard to find other representations of Ty and Tp as

incresing functions of independent random variables,




')

Fr A

Example 3 (bivariate Gumbel exponential distribution). Let T, and T, have

the bivariate survival function

F’(tl,tz) = exp{-t -t,-0t,t,}, t; > 0, t, > 0,

where o ¢ [0,1] 1is a fixed parameter. Here

(4.7) A(t) = a,(t) =t +%—e £2 ,t>»0
_ l1+gt+ou
(4.8) Ault) = ay(uft) =u +etu - Tog —Gz==, t > 0, u> 0.

The inverses AIl and Aél do not have as simple expressions as in Examples

1 and 2 but it is still not hard to check (4.4). Differentiating (4.7) and

(4.8) one obtains

M) =lrey 4 =12,

0 .
A.(y+bly) =1 + gy 'm , =12,

= 0 G
b‘ l azy 6b ~ T+ob+ay +I+ey >

aa i=1,2.
Substituting these in (4.4) it is seen that (4.4) does not hold. Thus we

cannot show that T; and T, are associated. In fact T; and Tp are not
associated. This follows from the fact (Johnson and Kotz (1972), p. 262) that

they are negatively correlated.

4,2, The multivariate case,

Let T =(T),.

random vector as in Section 3 and let T be defined as in (3.3) and (3.4).

..,Tn), n > 3, be a nonnegative absolutely continuous

As in Section 4.1 we will not distinguish between T and i_ and just write
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To clarify the general condition in Theorem 4.4 below, consider the

case n = 3. Following (3.5) - (3.7), for x = (xl,xz,x3) which satisfy

AII (x,) < min (Aél(xz),Agl( x3)) and Aél(xz-Az(Ail(xl))|T1 = AII(XI))
< A (x A3(A DTy = AIl(xl)) let
-1
ay (xsX9,X3) = A7 (xq),
3, (x)5%,y,%4) 2 3y (x) + Aél[XZ - w2|1(a1(§)|a1(5))|T1 a; (x)]

Clearly, on the given domain, each a;

i increases in X1s each of a and

aj increases in xo and a3 increases in X3. Thus, to find conditions for

association of Tl, T2 and T3 we only need to find conditions such that

(4.9) ap, increases in xp,
(4.10) a3 increases in xp,

(4.11) a3 increases in xj.

As in Section 4.1 it can be shown that (4.9) is the same as

¢2|1(t2‘t1 > w2|1 2|t +u) t2 > t1 +u > t1 > 0, or, more explicitly,

(4.12) AZ(tl) + A2(t2—t1|T1=t1) > Ap(tytu) + Az(tz-tl-u|T1=t1+u), ty > tituo> t) > 0,

or, by means of derivatives,

3 ) .
Az(tl) <) - SEI-A (t,-t |T1 cqy) t, > ty > 0. Similarly,

2274 1'c1=t1’

.......
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(4.10) is the same as

a

¢3|1,2(t3|t1,t2) > ¢3‘1,2(t3\t1,t2+u), t3 > t2 +u > t2 > t1 > 0, or nore
explicitly,

(4.13) A3(t2-t1|T1=t1) + A3(t3-t2|T1=t1, Ty =ty) >

. n
oA, .- .l '.

or, by means of derivatives,

= = = - _.a_ - = =
Ag(tp Tymt ) < ag(tg]Ty=t,To=ty,e) 35, Ayltymty| Tyst nTome,) Ly s
t

2 "2
32 t2 > t1 > 0., Finally, (4.11) is the same as (here
~ -1
az(xz,a) =a+h, (xz-AZ(a)|T1=a),x2 30, a>0)
N l"3|1,2(‘53‘t1’52("2’t1)) > *3|1,2(t3|t1+“’§2(xz’t1+“))’
Xo 0, 0 < ty <ty tucx a2(x2,t1) < a2(x2,t1+u) <ty , or, more explicitly,

Mylty) + aglan(xpty) - t)|Ty = t)) + ag(tgan(xpty)]T =t Tomas(x,,t4)
(4.14) > A3(t1+u) + A3(52(x2,t1+u)-t1—u|T1=t1+u)

+ A3(t3-52(x2,t1+u)|T1=t1+u, T2=~2(x2,t1+u)) s

Xo > 0, 0« by <ty *uc a2(x2,t1) < a2(x2,t1+u) <t

3 ’

- (see Figure 4.2) or, by means of derivatives,

Sufalal

L!‘&.- L‘
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1
w3|1,2(t't1’t2)

=A, (tl)+A3(t2—t11Tl=tl)
+A3(t-t2|T1=tl,T2=t2)
w3\1,2(t|tl+u,t )
=A3(tl+u)

T =t )

+u,T2=t2)

+A3(t2-tl-u1
+A3(t—t2|T1=t1
! =
1"3(1(t|t1) Ayt
/ +A3(t—tllTl=tl)

w3ll(tltl+u)=ﬁ3(tl+u)

+A3(t—tl—u|T1=tl+u)
A3(t)

I

‘1‘ . 1

- ) | t

, s - ' '

A . ! |

- - ] .

. ) | !
) i

]

i

. )
T '
| ! !
i ' ! f
USSR U A ey e > ot
t. +u =3, (x.,t t.=a.(x.,t.+u t
1 1 2 2( 2° 1) 2 2( 2’71 ) 3
Figure 4.2, TIllustration of (4.14).
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332(x2,a)

3 - =

174
3a, (x,,a)
) _ _ 2(X9s
*acy Mttt Tty Tomeo)| i
€%t a=t
352(x2,a)

$aglty]Tymtyae) * agltyfTy=t ), Tpmt,) « —

a=t1

where in (4.15) t, = Ez(xz,tl).

In the statement of the next theorem we use the notation (see (3.4))

. ) -1 _ .
A B L P L T E NS A L] PRSP RS L STERR PR

which describes, according to (3.4), how T s determined, given that

k
jl = l""’jk-1=k-1’ Jk = k and that XK = xks Tl = tl,.oo,Tk-l = tk_lo

Theorem 4.4. If wi'1’2"..,1_1[t1|tl,tz,...,tk ,

ak+1(xk+1,t1""’tk)’ak+2(xk+2’t1""’tk’ak+1)"“’

~ ~ ~e -~ ]
a; (X5 pstyseeestys 3415000035 5)] (the arguments of some of the d's
are omitted) decreases in

t, e {t:t, >t > t

kit 2 Yk-1r %41 ? Y

1<k <3 <n, X, > 0,...,xi » 0, 0 < tl < t2<...<tk_1, and if the above

41 ? as 2 = k+l,...,i-1}  for all

condition holds for all permutations of the indices 1,2,...,n, then

Tis¢eesT, are associated.

n

Sketch of the proof. The conceptualy simple but notationally involved proof

of Theorem 4,4 is similar to the proof of Theorem 4.1 and we will omit the
details. The idea of the proof is as follows: According to (3.4), given
that jl = l,o.u,j«i_l = .i - 1, Ji = 1. and that :I\.l = tl’.'.’?i‘l = t,i_l

and  X; = Xis the value of %i then is




S,

LV

SR T e T

EAE TR
-

24

_ -1 ]
t =t A [, Gl t e I T = B Tyt ]

Equivalently, t; is the solution of

1
(416)  x; =wgpy g (ltneenting)

Association of Tl,...,T will follow if we show that t; increases in xk(k

n
< i). In order to do that, we can fix t1,...,t,_; and express t, as a
function of x. and express ty . q,...,t; 7 as functions of tj {and of
X41s++5Xj-1)s Since, trivially, t, increases in x, it suffices to show
that t; increases in ty (recall that tiseeestyy and XisesosXj_1 are

held fixed).

Rewrite (4.16) as

k-1
(4.17)  xy = Ag(ty) - ZZZ Ai(tz-tl_llT1=t1,...,Tl_1=t£_1)
i-1
- zzk Mltgty gl Tyt e n Tyt )

(-t Tyt e T g7t 00)
and notice that t; is determined as the solution of (4.17). Clearly
(4.18) Ai(u|T1=t1’°"’Ti=ti-l) increases in u » 0 .

The LHS (4.17) is fixed (i.e., it does not depend on t,). [If the condition
of Theorem 4.4 holds, that is, if for a fixed t;, RHS (4.17) decreases as
t, increases, then (using (4.18)) the solution t; of (4.17) must increase

as t, Tincreases. But this is what we wanted to prove. 1

......................

Ot e
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Remark 4.5. Theorem 4.4 should be contrasted with Theorem 4.7, p. 146, of
Barlow and Proschan (1975). They show that if for all tis
(4.19) P(Ti > tilTl = tpseeesTig = ti-l) increases in ti,..oits s = 2,0000m,
then - Tl,...,Tn are associated. Their proof essentially constructs

Ti,...,T; as in (3.10) and (3.11) and then argues that (4.19) implies that

Ti,...,Ta are increasing functions of Uy,...,U. of (3.10) and (3.11), In

n
proving our Theorem 4.4 we follow the same line of thought but apply it to
fl,...,fn which arise from the total hazard construction described in (3.3)

and (3.4).

Remark 4.6. Shaked and Shanthikumar (1984b) showed that if for disjoint sets

I, JC {1,...,n} and fixed t

t s by [such that < EJ] and k ¢ TUJ

(I or J may be empty),

(4.20) A ((V L) VOV es) +ulTp = by, Ty = ty,0)
EEI " Jjed | -
> A (Ve )V Ve )T, =te), uso,
k 1511 Jjed J =1 I

then Ty,...,T, are associated. Below it is argued that (4,20) implies the
conditions of Theorem 4.4, Thus Theorem 4.4 provides a new route of proving
Theorem 5.2 (and Remark 5.5) of Shaked and Shanthikumar (1984b),

To avoid messy notation we consider the case n = 3 and show that (4.20)

implies (4.12), (4.13) and (4.14),

Proof that (4.20) ==> (4.12). From (4.20) we get
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?

2

)]

d

. (4,21) 12(t1+v|.) < Az(t1+v|T1=t1,-), t; >0, v>0.

J'

! Integrating (4.21) with respect to v over [0,u] we obtain

: (4.22) Ay (ty+u) - Ay () < Ay(u|Ty=ty), u> 0, t) > 0.

-

L. From (4.20) we also get

: (4.23) Az(t1+u+v|T1=t1+u,~) < xz(t1+u+v(T1=t1,-), t) > 0, u>» 0, v 0.
& Integrating (4.23) with respect to v over [0,t,-ty-ul we obtain

-

i Adding (4.22) and (4.24) and rearranging one obtains (4,12). 1

- Proof that (4.20) ==> (4.13). From (4.20) we get
.

2

(4.25) A3(t2+v|T1=t1,-) < A3(t2+v|T1=t1,T2=t2,-), t; >0, t5 >0, u>0, v>0.

: Integrate (4.25) with respect to v over [0,u] to obtain

: (4.26)  Aql(tyru-ty|Ty=ty) - Agl(ty=ty|Ty=ty) < a3(u|Ty=t{,To=t,), tytunrtyat >0,
-

(4

P4

(4

Condition (4.20) also yields

.v
‘e

& - - - 1
2 (4.27) A3(t2+u+v‘Tl=t1,T2—t2+u,-) < x3(t2+u+v|Tl-t1,T2—t2,-),t1>0,t2>0,u>0,v>0.




Integrate (4.27) with respect to v over [0,t3-to-u) to obtain

(4. 28) A3(t3-t2-u| T1=t1 ’T2=t2+u) < A3 (t3't2| T1=t1,T2=t2)

- A3(u|T1=t1,T2=t2), ty >ty +usty >t >0
Add ¢4.26) and (4.28) and rearrange to obtain (4.13). 1

Proof that (4.20) ==> (4,14), The following follow from (4.20) [See Figure

4.2]:

(4.29) A3(t1+v|.) < A3(t1+v|T1=tl,-), t; >0, v> 0,
(4.30) A3(t1+U+v|T1=t1+u,-) < 13(t1+u+v|T1=t1,-), ty >0, u>0, v>0
(4.31) x3(32(x2,t1) + v|T1=t1+u,-) < A3(52(x2,t1)+v|T1=t1.T2=52(X2,t1),-).
t1 >0, u>0, vy 0, Xy > 0,
(4.32) A3(§2(x2,t1+u)+v|T1=t1+u, T2=52(x2,t1+u),-)
< A3(32(x2,t1+u)+v|T1=t1,T2=32(x2,t1),.), t1 > 0, Xp 3 0, u» 0, v> O,

Integrate (4.29) with respect to v over [0O,u] to obtain
(4.33) Az(tytu) - ag(t)) < A3(u|T1=t1), 0 <ty sty +u
Integrate (4.30) with respect to v over [0, 32(x2,t1) -t - ul to obtain

(4.34)  a3(850xpt )=t -ulT =t +u) < Ag(F5(x,t 1)ty | T ot))

- A3(u|T1=t1), 0 < bty <ty tux SZ(XZ’tl)'

Integrate (4.31) with respect to v over [0, 32(x2.t1+u)-5?(x2,t1)] to

27

"
A

v s -

Ee oo

f/“"' ‘,‘

[\
~

.

[}

e RO

L ]




28

obtain

(4.35)  A(@p(xpstytu)=t-u| T =t +u) = Ag(@5(xpt )t -u| T =t +u)
< A3(a2(x2,t1+u)-a2(x2,t1)|T1=t1, 2=a2(x2,t1)),
0 <ty <ty +ucdyxyt)) < a(xy,ty+u).
Finally integrate (4.32) with respect to v over [0, t3 - Ez(xz,tl+u)] to

obtain

(4.36)  Aq(tq=dp(x,tu)| T =t TH=a,(x,,t 4u))
< A3(t3-a2 Xpst) |T1 tl,Tz—az(xz, 1))
- A3(@p(xpttu)-a, (xp, )| Ty=t ), Tpma, (x5t 1)),
0¢t) < ty+uc Ez(xz,tl) < Ez(xz,t1+u) < tg.

Add (4.33) - (4.36) and rearrange to obtain (4.14). i

5. An application: stochastic ordering,

5.1. The bivariate case.

Let (S,S,) and (T,Tp) be two nonnegative absolutely continuous
random vectors. The corresponding hazard rates and cumulative hazard

functions will be denoted as follows:

qi(t) = lim %E-P{t <SS, <t Atls >t, Sp > tr, t> 0, 1 =12,
At+0
ri(t) = l;?o ZE.P{t T, <t+ At\Tl >t, To > t), t> 0, = 1,2,
Q; (t) =[5 a;(uddu, t >0, 1 =12,
Ry(t) = f§ rilu)du, t 50, i = 1,2,
1 )
ql(t|t2) =1im S PLt <5< t+ At|s1 > 1, S, = ty), ty ty 5 0,
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q2(t|t1) = 1im it P{t < 52 <t + At|s =tis Sy >t} t >ty 0,
at+0
_ 1
rl(t|t2) = ;;To F P eT ct+ At|T1 >t, Ty = ty}, t > t, > 0,
1
; rp(tfty) = Tim = Pt < T, <t +atTysty, T, > t}, t> t; >0,
b Atv0
tytt
: t|t = ftz ql(u|t2)du, t>0,t,>0
tytt
02(t|t1) = Itl qz(u|t1)du, t>0, t; >0,
t,tt
Ry(t|t,) = ftz rifufty)du, t > 0, t, > 0,
. ty*t
- Rz(t|t1) = ftl r2(u|t1)du, t >0, ty> 0.

t) are defined in an

t), R.(+)

9 The inverses of Qi(')’ ;

N obvious manner as in Section 2,
2 Let X; and X, be independent standard exponential random variables.
2 S , -1 -1

Define Sl’ 52 as follows: On {01 (Xl) < 02 (XZ)} Tet
¥
o
< ~ _ _1
: (5.1) $1 = Q37 (X)),
y (5.2)  §, = 07hx)) + 05N %,-0,07 x0T (%)),
- and on (Q71(x,) > Q3R )y Tet
- 1Y 2 2
x

2 -1 -1 -1 -1,

3 (503) Sl z QZ (Xz) + Ql (XI'QI(QE' (Xz))|Q2 \X?_))s
: (5.4)  $, = 05t 0n,).
- Similarly on (RIV(X,) < RZ1(X,)} Tlet
:: ' 1 1/ " "2 2
7
&

........................
..............................
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‘.
: 1
o 2 _ -
_ (5.8) T, =RI*(X{),
: (5.6) T, = R7E(X;) + R 0G,R,RILN|RTHX,))
: ° 2°- 71 "1 2 V2tV M1 1 1//°
.
b and on {R'l(x ) > R'l(X )} let
‘ 1Y 2 72
: (5.7} T, = R3E0) + RIEG R, RSLOORGHX,))
. * 1~ "2 '\h2 1 V71 71vr2 e 2 ‘"2’
e 2 _L5-1
) (5.8) T, =R, (X2).
" Theorem 5.1. Let (§1,§2) and (fl,fz) be defined as in (5.1) - (5.8)
5 where X; and X, are independent exponential random varibles. Then
(SIQSZ) = (SI’SZ),
(T,,7,) & (1,,7,)
1°°2 1°°27¢
é Proof: Apply Theorem 2.1 twice. 1
‘: In (5.1) - (5.8) we use the total hazard construction twice: to construct
- §_ and to construct i_ . Note that we use the same X; and Xp for both
ﬁ constructions. Thus, roughly speaking, we put S and T on the same
.
- probability space. This enables us to compare them realization-wise as is
i done, e.g., in the next theorem,
..
)
¢ Theorem 5.2, If
N (5.9) Ql(W) > Rl(w), w > 0,
o (5.10) Qp(w) > Ry(w), w> 0,
(5.11)  Qy(s)) *+ 0y (w-s{]s;) > Ry(w), w> sy >0,
- (5.12) 01(52) +Q (w'52|52) > Ry(w), w5, >0,
;u}?:?u?era}:'. 3'\‘§'x}a}u;;}::x;u;u;n;u;u}uﬁx’?}u‘x]?;acrér;u;u}y¢?;?}};u;u}?;u}x;u;._ _:u(u#n’\{u,\,w.j




hadl i

(5.13) 02(51) + Oz(w—sllsl) > Ry(t)) + Rz(w-tlltl), W t) > sy 0,

(5.14) Q,(sp) + Ol(w-52|52) > Ry(ty) + Rl(w—tzltz), Wty > 5,50,
then

(5.15)  (5,,5,) 3t (T,.T,).

Remark 5.3. The conditions of Theorem 5.2 simply state that at any time w

(no matter what the previous history is) the cumulative hazard of S; Iis
larger then the cumulative hazard of Ti' i = 1,2. The proof of Theorem 5,2

below uses the fact that, since the total cumulative hazards of §i and %i

by the time they failed must be equal (to Xi)’ then necessarily §i < %i
3.5., 1 = 1,2 (see Figure 5.1 for a typical realization when

07t () < QM)

Proof of Theorem 5.2. We will show that

1 d.S. 'Y

Q.S ’

and the result then follows from Theorem 5.1 and (1.5).
Let Xy and Xp be independent standard exponential random variables.

First consider the case Oil(Xl) < Qél(xz). Then

¢ .l
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-1

-1 2 _p-1 -1 _ ¢
If Ry (Xl) <R, (Xz) then T = RY (Xl)(5>9)01 (Xl) =5 and (5.16)

follows. Also, in this case

a _ -~ _1 ~ A
(5.19) T, = T, + Ry (X,mRo(T)|T}) &
Thus - T, = dinfiw > T{R,(T)) + Ry(w=Ty|T{) > X5}

(5.19)
> Anfiw > $,:0,(5,) + Q,(w=S,|S;) > X,} = S, and (5.17) follows.
(5.13) 1°72*71 2 1171 2 (5.18)2
-1 -1
If Ry (X1) >R, (X2) then
(5.20) T, =RIY(x.)
: 2 2 V2

~ _ - _1 A ~
(5.21) T, =T, + R (X -R(TH)|T,) .
By assumption, §1 < §2 . Thus,
(5.22) 5 < 32(5=18;nf{w > $1:0,(57) + Qu(w-51]S;) > X))

< inf{w » S, :R (w) » X5} .
(5.11) 12 2
~ ~ -1 . )

Also, RZ(SI)(SfIO)QZ(Sl) = QZ(QI (Xl)) < X2 , where the second inequality

follows from the assumption Qil(xl) < Qél(xz). Thus, since Ry(w) increases

in w>» 0,

a

(5.23) inf{w > SI:RZ(w) > Xz} = inf{w » 0:R2(w) > X2}
= T, < T,.
(5.20) 2(5.21)!
Combining (5.22) and (5.23) it follows that §1 < §2 < ?2 < ?1 and both

(5.16) and (5.17) follow,

The proof of (5.16) and (5.17) for the case OII(Xl) > Qél(xz) is

OO SRR, |
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S similar, using (5.10), (5.19), (5.12) and (5.9) instead of (5.9), (5.13),
. (5.11) and (5.10) respectively. 1
N
\
L)
A 5.2. The multivariate case,
N Let S = (Sl,...,Sn) and T = (Tl""’Tn) be nonnegative absolutely
5 conttnuous random vectors. Denote by q1.(s|§‘J = EJ") the conditional hazard
14 rates of S defined as in (3.1) and denote by Q1.(s|§‘J = EJ) the conditional
. cumulative hazards of S defined as in (3.2). Similarly denote the
~3 conditional hazard rates and cumulative hazards of T by
A r',i(t|;r‘J = tj,+) and Ri(tlld = EJ).
', Using the total hazard construction (see Section 3) one can express
o - - - -
2 S and T (such that S st S and T st T) as functions of the same
‘ independent standard exponential random variables Xl,...,Xn. Using these
o §_ and j_ one can prove the following result using the method of the proof
\.
. of Theorem 5.2 (but with more involved notation). We omit the details.
<
- Theorem 5.4. If for 1< ¢ < j < n, 0 < S <...<sj, 0 < t1 $ewos tjZ .
a 0 < S; < ti’ i=1,...,2, and all permutations g5 of (1,...,n),
j-1
- (5.24) 121 O (554175415, (1) = S1oe->Sy(4) = 5¢)
- + -5, = cees N =S,
o 1-?k(w SJlsﬂ(l) 1 Se(3) SJ)
> > 121 Retip=til Ty = troee sy = &)
:: + Rk(w-tl‘T‘n(l) = tl’...,TTT()?.) = tz)
P whenever w 3> Sj ) tl (where empty sums are identically zero) then
- (5.25) s st

------------
. .

.....




...............
...................

The proof of Theorem 5.4 consists of constructing

k%23
1—»

and by (3.3)
and (3.4) using the same Xi,...,Xp (that is, putting S and T on the same
probability space) and noticing that (5.24) implies that realization-wise

S < T . The result then follows from (1.5).

Remark 5.5. Using the standard construction (3.10) and (3.11) one can show
the following analog of Theorem 5.4 (see, e.g. Veinott (1965) or Arjas and

Lehtonen (1978)): If

(5.26) s, 2T

1 1

and for s1 < tl""’si-l < ti-l’

1]

- t - -
(5.27) [S518] = syseeesSioy = 501 30 [T40Ty = tyhee s i) = t5 40,
i=2,3,...5,n, then §'§t T. The idea of the proof of (5.26) + (5.27) ==>
(5.25) is the same as the proof of Theorem 5.4: Using the same Ufyeensly  of

(3.10) and (3.11), put S and T on the same probability space and note that

(5.26) and (5.27) imply that realization-wise S' < T' .

Remark 5.6. Shaked and Shanthikumar (1934b) proved that if for all disjoint

sets I, JC {1,...,n} such that T UJ# ¢ and for all fixed vy o2 Oe the

following holds:

(5.28) qk (“'EI = .!I’ S =y a)’

> rk(u‘_T.I = 11,-), u oy (.V vV (Vv ov,),

RIS ARG TR S G T K
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Wl
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whenever 21 >v., u»0 and keI UJ (I or J may be empty) then

._I’
1.

|en

Theorem 5.4 provides a new way of proving their result. In fact Theorem
5.4 is a stronger result than Theorem 3.1 and 3.4 of Shaked and Shanthikumar
(1984b) because, as will be argued shortly, (5.28) implies (5.24).

‘To see that (5.28) implies (5.24) suppose that in (5.24), = = (1,...,n)

and order the j 51'5 and g ti's of (5.24) in an increasing order

0« Vi <...<vj+£ where each v
set v0 = 0 and

[vm,vm+1). let I = {i:ti<vm}, J = {iel, S; < v} . Note that if

is either $; or tj for some i. Also

m

v‘].m+1 =w (the w of (5.24)). Consider some interval

iel then S; < Vg, because in (5.24), s; < ti for 9 =1,000,2 « Let
u e [vm,vm+1) and apply (5.28) with the above I and J and

vy =1;» ¥y =5, to obtain
(5.29) qk(ulsI = 5[5 = S.0) > r‘k(ul'_f_I =t.e) .

Integrating (5.29) with respect to u over [v,v,i1) and adding the
resulting integral inequalities over m = 0,...,j + ¢ one obtains (5.24) with
m = (1,2,...,n). The proof for other permutations = 1is similar.

For example, to obtain (5.9) note that (5.28) implies
(5.30) ql(ul-) < rl(u|-), u > 0,

Integrate (5.30) with respect to u over [0,w) to obtain (5.9). To obtain

(5.11) note that (5.28) implies

(5.31) ql(u|S1 = 51") < rl(u‘-), sy
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Integrate (5.30) with respect to u over [O,sl) and integrate (5.31) with
respect to u over [Sl,w) and add the two resulting integral inequalities to

obtain (5.11).

6. Further applications.

6.1. Multivariate increasing failure rate average (MIFRA) distributuions.

Theorems 4.1, 4.3 and 4.4 give conditions under which the distribution

of Ty,...,Tp can be expressed as the distribution of increasing functions of
independent exponential random variables. If these increasing functions are
also subhomogeneous (a function g: R2 >R, is subhomogeneous if

g(at) < a g(t) for all a e [0,1], t > O, see, e.g., Marshall and Shaked
(1982)) then T satisfies the MIFRA condition of Block and Savits (1980).
For example in (2.21) [when a < a', B < 8'J fl and ?2 are expressed as
incresing subhomogeneous functions of X; and Xy, Hence (Tl,Tz) of Example
1 (when a < a', 8 < B') 1is MIFRA. This result has been obtained also by
Marshall and Shaked (1982) and Shaked (1984). A special case of this result

can be found in Block and Savits (1980).

6.2. Variance reduction in simulation of dependent varijables.

Let S = (Sl""’sn) and T = (Tl,...,Tn) be random vectors and let
g:R" » R and h:R" > R be monotone in the same (or the opposite)

direction., Due to theoretical or technical reasons, the expected value

(6.1) E[g(S) - h(T)]

may be hard to compute in some applications. One possible recourse is a

simulation of g{(S) and h(T). That is, k independent replications of
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S and T are generated using pseudo-random numbers, and (6.1) is then
estimated by averaging the k realizations of g(S) - h(T).

Rubinstein, Samorodnitski and Shaked (1985) have considered an efficient
method of simulating g(S) and h(T) when the distributions of S and T
satisfy (4.19). Their method is based on the fact that when (4.19) holds,
then- g(S) and h(T) can be represented as increasing functions of
independent uniform [0,1] random variables, using the standard construction
(3.10) and (3.11). Then, by putting S and T on the same probability
space, one can reduce the variance of the Monte Carlo estimate of

E(g(S)-h(T)).

The same idea may apply for random vectors with distributions satisfying
the condition of Theorem 4.4. Under this condition too it is possible to
represent g(S) and h(T) as increasing functions of independent random
variables, put them on the same probability space and reduce the variance of
the Monte Carlo estimate.

In some applications, even if both (4.19) and the condition of Theorem
4,4 hold, the total hazard construction (3.3) and (3.4) may yield simpler
expressions than the standard construction (3.10) and (3.11). In such cases
use of the total hazard construction is prefarable. A study of these

ramifications of the total hazard construction is planned.

6.3. Multi-unit imperfect repair.

Shaked and Shanthikumar (1984a,b) considered a model for imperfect repair
of multi-unit systems. In that model, n units (whose original lives

Ti{»+e.,Ty have absolutely continuous distribution) start to live at the same

n

time. Upon failure an item undergoes a repair and is scrapped if the repair

is unsuccessful. If i idtems (i = 0,1,...,n-1) have already been scrapped,

TR AT .Y N
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then, with probability pj4; the repair is successful and the item continues
to function - but it is only as good as it was just before the repair - and
the other items "do not know" about these failure and repair. With
probability 1-pi+1 the repair is unsuccessful and the item is scrapped.
Mathematically, if the original lives have the conditional hazard rates

,\k(.|I~I =t;e) ke T, then the resulting Tives Tiseses T, have the

conditional hazard rates Xk given by

(6-2) ’Xk('|II =_EI;') = plI"“l)\k(.'II =£I")’ kel,

where |I| is the cardinality of I.
From (6.2) it follows (see (3.2)) that K (t|T; =1t;), ke T -- the
hazard accumulated by Tk during the time interval
(v t.,, V to o+ t], t > 0, -- 1is given by

iel ! iel

(6.3) B (|7 =2,) = Pl 1] +1 AT =), ke T

Using (6.3), various results of this paper can be restated for

Tl,...,T . For example, if py = pp =...=p, and the Ak's satisfy the

n
conditions of Theorem 4.4 then Tl,...,Tn are associated. Similarly, two
random vectors resulting from application of imperfect repair can be compared
stochastically if the original random vectors satisfy the conditions of

Theorem 5.4, Proposition 6.6 of Shaked and Shanthikumar (1984b) can be proven

using these ideas.
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